Roll No.

320553(20)

B. E. (Fifth Semester) Examination, 2020

(New Scheme)

(Civil Engg. Br.)

GEOTECH ENGINEERING-I

Time Allowed; Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory carrying (2) marks each. Solve any two parts from remaining (b) and (c), (d) carrying (7) marks each.

Unit-I

- 1. (a) A soil sample has a void's ratio of 0.66 percent.

 Calculate porosity.
 - (b) Define liquid limit, liquidity index and consistency index. Determine the value of the liquid limit of a soil from the following test data:

7

2

38

25 20

Water content (%):

16

20 22

(c) A soil sample whose water content is 20% has a bulk density of 2.16 gm/cc. The sample undergoes air drying with insignificant change in void ratio. What is the water content of this sample, when its bulk density is reduced to 2 gm/cc.

(d) Prove that:

7

7

(i)
$$Y = \frac{(G+es)Yw}{1+e}$$

(ii)
$$Y_{\text{sat}} = \frac{(G+e)Yw}{1+e}$$

Y = unit weight of soil

= void's ratio

Degree of saturation

= Unit weight of water

= Specific gravity

Y_{sat} = Saturated weight of soil

linear becternic thought partition Unit-II confirmated to rather

[3]

(a) What is the meaning of D_{60} and D_{30} ?

(b) Explain textural classification.

(c) Show the Indian Standard Classification for fine grained soils on plasticity chart.

(d) Compute the total, effective and pore pressure at a depth of 12 m below the bottom of a lake 6 m deep. The bottom of the lake consists of soft clay with a thickness of max. than 15 m. The average water content for the clay is 40% and the specific gravity of soils may be assumed 2.6 S. Assume that the lake is filled up water upto the top

(Soft clay) Fig. 2.1.

Unit-H

(a) What is zero air voids line?

141

	(b) Following data given in table:					
	Soil	Specific gravity	Degree of saturation		OMC	
	Soil A	2.67		0.80	0.15	
-	Soil B	2:70		0.83	0.18	

Which soil is suitable for subgrade layer of soil with respect to dry density.

(c) What are the factors that affect compaction? Discuss in brief.

7

7

2

7

(d) Write the name of the permeability test for coarse soil? Derive the equation of this test.

Unit-IV

- 4. (a) Define geostatic stresses.
 - (b) A concentrated load of 20 kN acts on the surface of a soil. Find the stress intensity at point P and Q by using Boussinesq point load.

- (c) Explain Newmark's influence chart.
- (d) The graph between pressure and void ratio represents the result of consolidation test:

Calculate the value of coefficient of compression and compressibility.

Unit-V

- 5. (a) What is Coulomb's equation for shear strength of soils.
 - (b) Describe the test procedure of triaxial test.
 - (c) A cylindrical specimen of a saturated soil fails at an axial stress of 167 kN/m² in an unconfined compression test. The failure plane makes an angle of 54 with the horizontal. Calculate the shear strength parameters.
 - (d) A direct shear test was carried out on a cohesive

320553(20)

PIN

7

7

soil sample. The graph below represents the relationship between normal and stress.

Calculate the value of cohesion and angle of internal friction.

The second secon

Barmarchers *

3,070]

compression leading the failure offene insteas in partie

of 54 with the terrendist Capacitative Section (CD)